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SUMMARY 
This paper provides a multigrid incremental line-Gauss-Seidel method for solving the steady Navier-Stokes 
equations in two and three dimensions expressed in terms of the vorticity and velocity variables. The system 
of parabolic and Poisson equations governing the scalar components of the vector unknowns is solved using 
centred finite differences on a non-staggered grid. Numerical results for the two-dimensional driven cavity 
problem indicate that the spatial discretization of the equation defining the value of the vorticity on the 
boundary is extremely critical to obtaining accurate solutions. In fact, a standard one-sided three-point 
second-order-accurate approximation produces very inaccurate results for moderate-to-high values of the 
Reynolds number unless an exceedingly fine mesh is employed. On the other hand, a compact two-point 
second-order-accurate discretization is found to be always satisfactory and provides accurate solutions for 
Reynolds number up to 3200, a target impossible heretofore using this formulation and a non-staggered 
grid. 

KEY WORDS Incompressible flows Vorticity-velocity Navier-Stokes Multigrid 

INTRODUCTION 

In the last few years the first author has developed robust and efficient numerical schemes for 
solving the vorticity-stream function Navier-Stokes equations.’ - 4  A deferred correction strat- 
egy’ on the discrete equations written in delta form6 has been combined with a robust multigrid 
block-line-Gauss-Seidel (BLGS) relaxation procedure to obtain second-order-accurate steady 
state solutions to rather difficult problems at very low computer costs.’ A new effort has now been 
undertaken, aimed at developing a similar numerical method for calculating 3D flows, using the 
vorticity-velocity equations. 

For such a formulation, several studies have already appeared in the literature; see e.g. 
References 8-18. In most investigations the governing equations have been written as a system of 
parabolic and Poisson equations for each component of the vorticity and velocity vectors. 
According to this kind of approach, the conditions that the velocity field is divergence-free, its curl 
equals the vorticity and, in the 3D case, the vorticity vector field too is divergence-free are left 
aside from the set of governing equations and therefore there is no guarantee that their discrete 
form be satisfied. In practice, in 2D problems, a spatial discretization based on a staggered grid is 
found to satisfy these conditions; see e.g. References 12 and 14, which provide accurate high-Re 
solutions for reasonable values of the mesh size. On the contrary, if one uses standard (i.e. non- 
staggered) finite differences, the numerical solution does not satisfy the discrete counterparts of 
these conditions exactly and is very sensitive to the discretization of the equation used to evaluate 
the vorticity at solid walls.1° As a consequence, no standard finite difference solution to the 
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vofticity-velocity equations has been reported to date for Re > 1000. For example, References 9 
and 10 provide only low-Re results, despite the fact that a very accurate exponential schemeg and 
a third-order-accurate upwind approximation' have been used for the discretization of the 
advection term; similarly, a non-uniform grid with 51 x 51 points has been necessary in Reference 
11 to obtain the solution at Re= 1OOO. 

For the 3D formulation the situation is even worse. In fact, a standard finite difference method 
does not satisfy any of the three aforementioned conditions, whereas the solution calculated using 
a staggered grid provides a divergence-free velocity field but a vorticity field which is neither 
divergence-free nor equal to the curl of the velocity. l8 To date, staggered-grid solutions which 
satisfy the discrete form of all three conditions exactly have been obtained only using a so-called 
divwxrl forrn~lation'~ in which the continuity equation and the definition of the vorticity are 
taken as a system of first-order equations governing the velocity, in place of the Poisson 
equations. 

It therefore appears interesting and worthwhile to address the following questions. (i) Is a 
standard finite difference discretization of the vorticity-velocity equations viable at high values 
of the Reynolds number? (ii) For the 3D case, could the Poisson equations for the velocity 
components still be used (on a staggered grid) while assuring the solenoidal character of the 
vorticity field and its correct relationship to the velocity? Whereas this second question has been 
addressed in a parallel effort," the first one is the main object of this paper. 

In a preliminary study16 a node-centred incremental BLGS method has been developed for the 
2D vorticity-velocity equations and applied to solve the driven cavity flow problem at Re s 1OOO. 
The solutions were found to be much more sensitive to the treatment used for evaluating the 
vorticity at solid walls than one would have anticipated from References 1@-12. A one-sided two- 
point first-order-accurate discretization of the vorticity definition at solid boundaries produced 
very inaccurate results already at Re = 100; a three-point one sided second-order-accurate 
discretization produced accurate results at Re = 100 but very inaccurate ones at Re= 1ooO; 
finally, two different two-point compact discretizations produced reasonably accurate results at 
both values of the Reynolds number; see Reference 16 for more details. That study, however, 
demonstrated that the method was not efficient enough to obtain very-fine-grid solutions for 
Re = lo00 or higher at reasonable computer costs. In this paper a scalar version of the method of 
Reference 16 has been developed and combined with the multigrid strategy of Reference 3, leading 
to an efficiency gain over the BLGS method of Reference 16 of more than one order of magnitude. 
Therefore, for the 2D case, the critical issue of the influence on accuracy of the numerical 
treatment for the vorticity on the boundary can now be addressed for fine enough grids and high 
enough values of Re within rather limited computer resources. Furthermore, for the 3D case, a 
rather simple computer code can be built so as to verify the possibility of combining a 3D scalar 
LGS method with the multigrid strategy of Reference 3 and to assess the computational 
effectiveness of the resulting numerical scheme. 

GOVERNING EQUATIONS 

The nondimensional vorticity transport equation for incompressible viscous flows is given as 

ao /d t  + (V V)w -(o V)V = V2u/Re, (1) 
where o is the vorticity vector, V the velocity, V the gradient operator, Vz the Laplacian operator 
and Re the Reynolds number. Of course the vorticity is defined in terms of the velocity through 
the relationship 

o = v x v .  (2) 
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In order to obtain a second-order equation for the velocity, one takes the curl of equation (2). 
Using the vector identity 

Vx(VxV)= V(V*V)-VV (3) 
and the incompressibility constraint 

v-v = 0, (4) 

one finally obtains a vector Poisson equation, namely 

v2v = -v x w .  (5) 
The governing equations of interest here are therefore the two vector equations (1) and (5) for the 
two vector unknowns w and V. 

As far as the boundary conditions are concerned, V is prescribed at the solid boundaries, 
whereas no specification for the tangential components of w is in general available. On the other 
hand, the two unknown variables w and V must be such that the mutual relationship (2) and the 
continuity equation (4) be satisfied. 

The missing boundary conditions for w could be obtained by enforcing at solid boundaries 
either equation (2)’- 12* 14* 16- l8 or the continuity equation (4) together with the tangential 
components of the vorticity definition (2), namely” 

n x w = n  x(V x V), (6) 
where n is the unit vector normal to the solid boundary. 

The vorticity definition (2) provides very simple expressions for the unknown values of the 
vorticity at the boundary in both 2D and 3 D  and therefore is used to complete the formulation of 
the differential problem in this study. 

In conclusion, for Cartesian co-ordinates, the governing equations (1) and (5) are given as 

w l , +  Viol,+ V201,+ V3w1,- V 1 , o l -  Vl ,w2-  Vl,w3 = ( ~ l , + ~ l , + w l , , ) / R e ,  (7) 

(8) 

(9) 

w2,+ Vlw2,+ V2w2,+ V302,- V2,wl- V2,02- V2,w3 = (02,,+w2,,+w2,)/Re, 

w3,+ Vlw3,+ V203,+ V3w3,- V3,wl- V3,02- V3,03 = (w3,x+w3yy+w3,,)/Re, 

V1,,+ V1,,+ V 1 2 2 = ~ 2 2 - ~ 3 y ,  

Y2,, + V2,, + V 2 z , = ~  3, - 0 l,, 

v3,,+ V3,,+ v3,, = wl, -02 , .  

In equations (7)-(12), V1, V2, V3 and w l ,  0 2 , 0 3  are the three Cartesian components of V and w 
respectively, x, y, z are the Cartesian co-ordinates and subscripts indicate partial derivatives. 

As far as the numerical boundary conditions are concerned, the three velocity components are 
prescribed at all solid boundaries and the three vorticity components are given from equation (2), 
namely 

0 1  = v3,- v2,, (13) 

0 2  = v1,- v3,, (14) 

0 3  = v2,- Vl, .  (15) 

In the present study only the 2D and 3 D  driven cavity flows will be considered; see Figures 1 
and 2. In both cases, in equations (13)+15) only the derivatives normal to the solid walls are 
different from zero. 
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Figure 1. 2D driven cavity flow geometry Figure 2. 3D driven cavity flow geometry 

NUMERICAL METHOD 

Equations (7)-( 12) are discretized and linearized in time using a two-level implicit Euler scheme 
and the delta form of Beam and Warming.I6 Here only the first components of equations (3) and 
(9, namely equations (7) and (lo), will be considered for brevity: 

A w l / A t +  V l A o l , +  V 2 A o l y +  V3Ao1 , -  V1,Awl -(Aw1,,+AwlyY+Awl,,) /Re 

= -( V l ~ l ) ~ - (  V201),-( V301),+ Vl,01+ Vl,02+ Vl,03 

+ (wlxx  + w l,, + ol , , ) /Re  (16) 

(17) 
In equations (16) and (17), V1, V2, V 3 , w l ,  w2, w 3  refer to the solution at a given iteration 

level and A V1, A V2, A V3, Aw 1, Aw2, Aw3 indicate the unknowns, namely the variations of the 
dependent variables from the old to the new iteration level. Also, a relaxation-like time derivative 
has been added to the Poisson equation (10) to parabolize it. Equations (16) and (17) are solved by 
means of a very robust alternating direction line-Gauss-Seidel method very similar to that of 
Reference 16. However, here, in each equation, only a single unknown is dealt with implicitly, 
(e.g., only Awl and its derivatives appear in the left-hand side of equation (16)) the other five 
variables being evaluated explicitly. In this way each incremental unknown is made independent 
of the others, so that only scalar tridiagonal systems are solved instead of block tridiagonal ones 
as in References 2 and 16. It is noteworthy that: (i) the equations on the right-hand sides are the 
steady state equations, which are discretized using central differences and the conservative form 
of the advection terms, for accuracy; (ii) first-order-accurate upwind differences are used for the 
advection terms on the left-hand side of the vorticity transport equations; in this way a ‘transient’ 
artificial viscosity is introduced which vanishes as the steady state is reached, while the diagonal 
dominance of the tridiagonal systems to be solved is guaranteed at all values of 

In order to describe the multigrid procedure employed in this s t ~ d y , ~ , ~  equations (16) and (17) 
are rewritten in a more general form by introducing superscripts H and h to indicate the current 
and the finest grids used in the computations respectively: 

AwlH/At + Vl‘Awllf + V2hA01f + V3hAwlf - V1:AwlH -(Aollfx +Awl$ +Aolg ) /Re  

A Vl /At  - A V1, - A V 1, - A V l,, = V1, + V 1 ,, + V l,, - 02, + ~ 3 , .  

=Cf[-( V l ~ l ) ~ - (  V201), -( V 3 ~ 1 ) ,  + Vl,01+ Vl,02 + Vl,03 

+ (wlxx+wl , ,+wl , , ) lRe lh ,  (18) 

(19) A vi H / ~ t - ~  vifX-d v i $ - ~  vi: = cf( vi,,+ vi,+ vi,, - ~ 2 ,  +o3,)! 
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In equations (18) and (19), CF indicates the full-weighting collection operator, applied as many 
times as needed to go from the finest mesh h to the current mesh H. Starting from an arbitrary 
initial condition, equations (18) and (19) and the other ones for the remaining vorticity and 
velocity components are solved on the finest grid h - where they coincide with equations (16) and 
(17)- by means of a three-sweep (two-sweep for the 2D case) alternating direction LGS iteration, 
to provide A w l  h ,  A V1 h ,  etc.; the solution ( o l h ,  V l h ,  etc.) is updated and equations (18) and (19) 
are solved on successively coarser grids (H = 2h, 4h and 8h);  the entire process is repeated until 
the finest-grid residual is reduced to a suitably small value. In more detail, at every grid level H the 
following steps are required: (a) the coefficients on the left-hand side of equations (18) and (19) are 
injected at the H-mesh grid points using the finest-grid solution (o lh ,  V l h ,  etc.) locally, whereas 
the right-hand side steady state residuals are collected from the finest grid h up to the current grid 
H; (b) equations (18) and (19) are then solved approximately, using a single sweep of the 
aforementioned LGS smoother and homogeneous Dirichlet boundary conditions, to provide 
A o l H , A V I H ,  etc.; (c) A w l h , A V l h ,  etc. are evaluated as 

( d o  1 h ,  A V1 h,  etc.) = Zk(Aw 1 H ,  A V1 H, etc.), (20) 

where Zk is the standard multilinear interpolation operator from the current grid H to the finest 
grid h; (d) the finest-grid solution is updated as 

(olh, Vlh,etc.) = (olh, Vlh,etc . )+(Awlh,AVlh,etc . ) ;  (21) 
(e) the vorticity at the boundary is finally corrected so as to satisfy equation (2) (i.e. equations 
(13)-(15)) on the finest mesh. For the 2D case, all steps are performed twice, with the LGS 
solution method marching from left to right and from top to bottom of the computational 
domain respectively. For the 3D case the same steps are performed three times, the LGS solution 
method marching from backwards to forwards in the third sweep. The multigrid cycle is shown 
schematically in Figure 3, where it is seen to differ from the more usual V, W and sawtooth cycles; 
see References 3 and 4 for more details. 

A detailed discussion of the spatial discretization used for equations (13)-(15) is in order. In 
Reference 16, for the 2D driven cavity problem, using uniform grids with h 2  1/40, it was found 
that: a first-order-accurate approximation of equation (1 5) produced very inaccurate results 
already at Re = 100; the standard one-sided second-order-accurate discretization became inade- 
quate at Re = 10o0; two second-order-accurate compact approximations were satisfactory at 
both values of Re. Here, in order to conduct a more thorough analysis, only two second-order- 
accurate discretizations of equation (1 5) are considered, for consistency with the order of accuracy 
at internal grid points. Therefore, with reference to Figure 4 and assuming V2 = constant on the 

h 

2h T' 
4h  

8 h  

Figure 3. Scheme of the multigrid cycle: R, relaxation; U, 
updating C, collection; I, interpolation Figure 4. Near-wall grid point distribution 
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wall, the following discrete forms of the equation 0 3  = V2, - V1, = - Vl,, for example, are 
employed : 

0 3 1  = (V1, -4  V12 + 3 V11)/2h, (22) 

W31 =-w3~-2 (V12-V11) /h .  (23) 
Equation (22) is obviously second-order-accurate. In equation (23) the term V2,, which should 
have to appear on the right-hand side has been neglected. In fact, 

V2,, 2 = V2,, 1 + V2,,, 1 h + 0 ( h 2 )  

V2,. 1 = - VlXX, 1 - V3ZX. 1 * 

(24) 

(25) 

and, from the continuity equation at the grid point 1 on the solid wall, 

Now, V2,, 1 ,  Vl,,, and V3,,, are all zero, so that V2,,2 is also zero within second-order 
accuracy. 

For the 3 D  case, symmetry allows one to halve the computational domain (see Figure 2). 
Therefore different boundary conditions are needed on the symmetry plane (z = 0.5): o 1, w2 and 
V3 are set to zero; 0 3  is computed from equation (15), with V2, and V1, being approximated 
using standard central differences; V1 and V2 are evaluated from the corresponding Poisson 
equations (10) and (ll), discretized using central differences. The additional unknowns at the 
image points outside the computational domain are eliminated by means of the appropriate 
derivative symmetry or antisymmetry conditions, again discretized by means of standard central 
differences. 

2 D  RESULTS 

The classical driven cavity flow problem19 was considered in this study; see Figure 1. The 
efficiency of the present method was addressed at first, by computing the solution for Re= 100 on 
a uniform grid with h = 1/48 and the solution for Re = lo00 on a uniform grid with h = 1/96. The 
convergence histories are given in Figure 5 and 6 respectively, where the logarithm of the residual 
of the vorticity equation (R) is plotted versus the work ( W). One work unit is the CPU time 

-61 I I I I , I , L 
0 200 400 600 800 1000 0 600 1200 1800 2400 3000 

W 

Figure 5. Convergence history for Re = 100, h = 1/48 Figure 6. Convergence history for Re= lo00, h = 1/96 
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required to perform a two-sweep (alternating direction) LGS iteration on the finest grid. The results 
corresponding to using one, two, three and four grid levels are given in the figures. The efficiency 
improvement due to the use of multiple grids is remarkable, the four-grid method converging to 
machine zero in about seven to eight times less work than the basic smoother using a single grid 
in both cases. Obviously, for Re= lo00 the method converges less rapidly owing to both the 
higher value of Re and the finer grids used in the calculation. For this case, machine zero on an 
HP 840s computer using single-precision arithmetic is reached after about 3000 work units when 
using only the finest grid, but after only about 400 work units when using four grid levels. 
Incidentally, one work unit for the h= 1/96 grid corresponds to about 3 CPU seconds on the 
aforementioned computer, so that the four-grid computation, carried out to machine zero, 
requires only about 20 CPU minutes. All these calculations were performed using equation (23) 
for evaluating the vorticity at solid boundaries and a non-optimized unitary time step. 

A simple and efficient method for solving the 2D steady state vorticity-velocity Navier-Stokes 
equations on a node-centred grid being available, numerical experiments have been conducted to 
investigate the influence of the two different approximations used to evaluate the wall vorticity, 
equations (22) and (23). For Re= 100 the h = 1/48 results are given in Figure 7 as the V1 and Y2 
velocity components along the vertical and horizontal centrelines of the cavity. The solid lines 
show the staggered grid solution of Reference 17. Such a solution satisfies the discrete form 
of the continuity equation exactly and coincides with that obtained by solving the 
vorticity-stream function equations on the same grid,14 so that it can be considered as the best 
possible second-order-accurate finite difference solution. The broken and dotted lines indicate 
instead the present results obtained using equations (23) and (22) respectively. Both solutions 
appear to be satisfactory for this low Reynolds number. A totally different conclusion arises from 
the Re = 400, h = 1/48 results given in Figure 8. Whereas the equation (23) results are very similar 
to the reference solution, the equation (22) results are very inaccurate. It must be pointed out that 
this solution is converged to machine zero and that the same solution is obtained even if the 
equation (23) results are used as initial condition for the computer code implementing equation 
(22). Therefore one can presume that at higher values of Re a much finer mesh is warranted to 
obtain reasonably accurate results in conjunction with equation (22). In order to verify this 
hypothesis, the numerical solutions for h= 1/96 and 1/192 have been obtained and are given in 
Figures 9 and 10 respectively. It clearly appears that the broken lines, indicating the equation (23) 
results, practically coincide with the solid lines (staggered grid results). The equation (22) results 

-1.0 -. 5 .o  .5 1.0 -1.0 -. 5 . o  .5 1.0 

Figure 8. Velocity profiles for Re=400, h= 1/48 Figure 7. Velocity profiles for Re= 100, h = 1/48 
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Figure 9. Velocity profiles for Re =400, h = 1/96 Figure 10. Velocity profiles for Re=400, h= 1/192 

instead tend to the reference solution when the mesh is refined but are still remarkably inaccurate 
for the rather fine h = 1/96 grid. This fact is disappointing, considering that the solutions provided 
by the other two methods vary very little when going from the coarsest ( h =  1/48) to the finest 
(h=1/192) mesh. 

Needless to say, for the higher value of Re, namely Re = 1000, the equation (22) results with 
h = 1/96 are much less accurate than the corresponding results for Re = 400 using the same grid; 
see Figure 11, which provides the usual three sets of solutions. At this point no further mesh 
refinement was attempted insofar as a very clear conclusion emerges. A second-order-accurate 
node-centred solution of the vorticity-velocity equations has the same level of accuracy as the 
corresponding staggered grid solution only if equation (23) is used (instead of equation (22)) to 
evaluate the vorticity at solid walls. On the contrary, if one uses equation (22), an exceedingly fine 
mesh is necessary to obtain reasonably accurate results at moderate-to-high values of the 
Reynolds number. Of course, it would be interesting to understand the basic reason for such a 
behaviour, which, so far, has escaped the efforts of the authors. 

Finally, the more difficult problem with Re = 3200 was considered using a uniform grid with 
h = 1/128 in order to verify the adequacy of equation (23) for such a high value of Re. For this case 
the present multigrid scheme started to face convergence difficulties and the time step for the 
vorticity transport equation had to be reduced to 0-2 in order to avoid divergent behaviour. The 
solution, converged to machine zero within a few CPU hours, is given in Figure 12. Once more, 
the equation (23) results are acceptable and very similar to the reference staggered grid results of 
Reference 17. 

3D RESULTS 

For the 3D driven cavity problemlo (see Figure 2) only equation (23) has been employed to 
approximate the numerical boundary conditions given by equations (1 3)-( 15). Only the flows for 
Re = 100 and 400 have been considered, higher values of Re requiring excessive CPU time. The 
numerical results are provided as the longitudinal velocity profile Yl(y)  at x=z=0-5. Figure 13 
gives the results for Re = 100. The broken line corresponds to the present node-centred results, 
obtained using a uniform step size h = 1/32. The solid line provides the staggered grid results of 
Reference 18 with h =  1/30, whereas the circles give the results of Reference 9 with h= 1/25. 
Figure 14 gives the results for Re=400. The broken and solid lines refer to the present node- 
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-1.0 -. 5 .o  .5 1.0 

Figure 11. Velocity profiles for Re= 1O00, h =  1/96 

-1.0 -. 5 .o .5 1.0 

Figure 12. Velocity profiles for Re = 3200, h = 1/128 

Figure 13. Velocity profiles for 3D flow at Re= 100 

-. 5 .o . 5  1.0 
v1 

Figure 14. Velocity profiles for 3D flow at Re=400 

centred results with h =  1/32 and the staggered grid solutions of Reference 18 with h =  1/24 
respectively, and the circles indicate the h= 1/20 solution of Reference 10. From these figures the 
adequacy of a node-centred discretization combined with the compact discretization used to 
evaluate the vorticity at solid boundaries is confirmed also for the 3D formulation, at least for 
moderate values of Re. 

It was mentioned that the 3D version of this method was developed to assess the effectiveness of 
the multigrid strategy of Reference 3 on a 3D scalar line-Gauss-Seidel procedure. The conver- 
gence history for Re = 100 is given in Figure 15. The solid lines refer to the h = 1/32 results and the 
broken lines to the h = 1/20 results. The logarithm of the average residual of the three vorticity 
components ( R )  is plotted versus the work ( W). The CPU saving obtained in going from one to 
two grid levels is about one-half, but there is basically no further gain when using three grid levels. 
This is probably due to the rather coarse (finest) grid used in these 3D calculations. The Re = 100 
and 400 calculations required about two and twenty CPU hours to converge to machine zero 
respectively. For Re=400 the time step for the vorticity transport equations had to be reduced 
from 1.0 to 0.05. Therefore higher values of Re were not attempted. 
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Figure 15. Convergence history for 3D flow at Re= 100 

CONCLUSIONS 

A simple multigrid line-Gauss-Seidel method has been developed for the vorticity-velocity 
Navier-Stokes equations in two and three dimensions using a non-staggered grid and second- 
order-accurate central differences. Extensive numerical experiments for the 2D driven cavity flow 
problem have shown the crucial importance of choosing a particular discretization for the 
equation used to evaluate the vorticity at solid walls. For the first time, accurate solutions have 
been obtained using a non-staggered grid vorticity-velocity approach for Re as high as 3200. The 
method has also been proven to be effective for the simple driven cavity problem in 3D, but only 
at moderate values of the Reynolds number. The simple multigrid strategy employed in this study 
has provided an efficiency gain of seven to eight times in 2D and of only twice in 3D. 
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